新闻中心

防守效率排名出炉引争议(防守效率榜单发布惹热议)

{$eyou.field.add_time|MyDate='Y-m-d',###}
浏览次数:{eyou:arcclick /}次
返回列表

Evaluating sports statistics

I’m considering different methods to evaluate game performance, like methodology and sample calculations. There’s a lot to adjust for, including opponent strength and garbage time. I might suggest various options like explaining defensive efficiency or analyzing a specific league or season if the user has data. I’ll also provide a concise summary of common controversies, such as different possession formulas, opponent shooting luck, and issues with small sample sizes or injuries.Providing coding assistance

think

I can offer a simple Python snippet to compute defensive ratings from a CSV of team game logs. The instructions say to keep formatting light unless the user specifically asks for more, so I should be concise. It might be better to begin with a brief explanation and then inquire about the specific league and what the user needs help with. Oh, and I’ll need to respond in Chinese!

你是说哪一项防守效率榜?NBA、CBA,还是五大联赛的足球数据?不同榜单口径差很多,容易引争议。先给你快速梳理常见“排名不一致/不服气”的原因,你看看要不要按某一联赛细算或复核:

  • 口径差异:是否剔除垃圾时间、加时是否计入、主客场合并方式不同。
  • 回合数估算:用的回合公式不同(箱分估算 vs. 回放级别精算),会直接影响DefRtg=失分/百回合。
  • 赛程强度:是否做对手强弱校正(对强队打得多,裸数据会吃亏)。
  • 投篮运气:对手三分命中波动大,是否做回归或“无干扰/受干扰”质量校正。
  • 篮板与犯规口径:是否把“队篮板/队失误”纳入,是否区分非投篮犯规、清掉无意义的末节犯规。
  • 阵容与可用性:是否做“在某核心在场/不在场”的调整;伤病导致的样本不稳定。
  • 时间窗口:小样本期(赛季初/最近10场)波动大;跨月/全季口径不同。

你想怎么继续?

in

  1. 指定联赛+赛季(或链接榜单),我帮你对齐口径并解释差异。
  2. 把球队场次级数据给我(或我写脚本抓取),我按“去垃圾时间+赛程强度+三分回归”重算一版排名。
  3. 做一页可视化(DefRtg vs. 对手强度/对手3P%),直观看“真防守”和“运气”成分。
  4. 只要一段通俗总结,我按你指定的两三支争议球队写点评。

搜索